MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lectures 14: Shape Recognition Using Laplacian Eigenvalues and Computational Methods of Laplacian Eigenvalues/Eigenfunctions
نویسندگان
چکیده
In this section, we will introduce the work of Kbabou, Hermi, and Rhonma (2007)[2]. Their main idea is to use the eigenvalues and their ratios of the Dirichlet-Laplacian for various planar shapes as their features for classifying them. Let the sequence 0 < λ 1 < λ 2 ≤ λ 3 ≤ · · · ≤ λ k ≤ · · · → ∞ be the sequence of eigenvalues of Dirichlet-Laplacian problem: −∆u = λu in a given bounded planar domain Ω with Dirichlet boundary condition u = 0 on its boundary ∂Ω.
منابع مشابه
MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lectures 12+13: Laplacian Eigenvalue Problems for General Domains: IV. Asymptotics of the Eigenvalues
متن کامل
MAT 280: Laplacian Eigenfunctions: Theory, Applications, and Computations Lecture 20: Introduction to Spectral Graph Theory–III. Graph Cut and Cheeger Constants, Isospectral Graphs, and Discrete Laplacian Eigenvalue Problems
Example 1.2. In Figure 1, S is the set of dark nodes, and the dotted lines form ∂S. S ∆ = V \S. Also, vol(S) = m(S) ∆ = x∈S m(x).
متن کاملSeidel Signless Laplacian Energy of Graphs
Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...
متن کاملInverse nodal problem for p-Laplacian with two potential functions
In this study, inverse nodal problem is solved for the p-Laplacian operator with two potential functions. We present some asymptotic formulas which have been proved in [17,18] for the eigenvalues, nodal points and nodal lengths, provided that a potential function is unknown. Then, using the nodal points we reconstruct the potential function and its derivatives. We also introduce a solution of i...
متن کاملOn Generalization of Sturm-Liouville Theory for Fractional Bessel Operator
In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007